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Abstract 

This paper presents a comparison of two production 
history-matching methods using the UNISIM-I-H dataset. 
The objective is to evaluate the strengths and 
weaknesses of these methods when applied to seismic-
derived models that already carry different sources of 
information. Both methods provide an estimation of the 
uncertainty by updating an ensemble of realizations. The 
quality of the data match, the preservation of the prior 
models and the ability of quantifying the uncertainties are 
used to compare the two methods. A first history 
matching is performed using the Ensemble Smoother with 
Multiple Data Assimilation (ES-MDA) method. A second 
history matching is performed using the Multi-Scale batch 
Levenberg-Marquardt ensemble Randomized Maximum 
Likelihood (MS-LM-enRML) method. While the ES-MDA 
perturbs the property fields grid-block by grid-block, the 
MS-LM-enRML uses wavelet re-parameterization in order 
to perturb those fields scale-by-scale and avoid 
unnecessary updates. Although a slightly better match is 
obtained with ES-MDA, MS-LM-enRML preserves better 
the prior models and the variability of the ensembles. 

Introduction 

The integration of different sources of information (well 
logs, geophysical and production data) helps reduce the 
uncertainty and improves the predictions of the reservoir 
models. However, when a sequential approach is 
followed, which is a common practice, it is important to 
preserve the information carried by the models when 
assimilating new data and keep a reasonably good 
estimation of the uncertainty. Production history matching 
is the last step of this workflow. Ensemble-based methods 
of optimization (Aanonsen et al., 2009) have gained 
popularity thanks to their flexibility, computational 
efficiency and ability to match dynamic data using a wide 
range of parameters. Ensemble-based methods also 
allow the estimation of posterior uncertainties using its 
ensemble of realizations. The ensemble is used to 
generate a linear regression model between the flow 
responses and the input parameters to update each 
individual ensemble member. However, this regression 
model is generally poorly constrained due to the limited 
size of the ensemble as a full fluid flow simulation needs 
to be run for each ensemble member. This can lead to a 
noisy update of the model parameters and an over-

reduction of the ensemble variability due to the presence 
of spurious correlations in the regression model. As a 
consequence, geological or seismic-driven features can 
be damaged and the uncertainties provided by the 
ensemble are underestimated. 

The objective of this paper is to evaluate the ability of two 
ensemble-based history-matching methods, the ES-MDA 
(Emerick and Reynolds, 2013) and MS-LM-enRML 
(Gentilhomme et al., 2015; Chen and Oliver, 2013), to 
preserve the prior information and quantify the uncertainty 
of the predictions while matching the historical production 
data. The UNISIM-I-H synthetic dataset (Avansi and 
Schiozer, 2015) used for this purpose spans over 10 
years of production history. Porosity, net-to-gross and 
permeabilities are inverted along with initial fluid contact 
and relative permeabilities. The same ensemble of prior 
realizations and data error model are used with both 
methods and distance-based localizations, discussed in 
more detail in the following, are applied. 

A short overview of the methods, focused on their 
differences, is provided in the following sections. Then the 
results of the different inversions are compared. Finally, 
the last section presents the conclusions of the paper.  
  

Optimization methods 

Both methods are derived from the enKF standard 
equation (Evensen, 2003), but instead of assimilating the 
time dependent data sequentially, the ES-MDA and MS-
enRML uses all the data at one step, and the same data 
can be assimilated multiple times so that the update 
equation for each individual realization can be written as: 

 

𝒎𝑗+1 = 𝒎𝑗 + 𝑪𝑴𝑫(𝑪𝑫 + 𝑪𝑫𝑫)−1 (𝒅𝑢𝑐 − 𝒈(𝒎𝑗))  (1) 

           = 𝒎𝑗 + 𝑲 (𝒅𝑢𝑐 − 𝒈(𝒎𝑗)) 

 
where 𝑪𝑴𝑫 is the (𝑛𝑝 × 𝑛𝑑) cross-covariance matrix 

(computed from the ensemble; Evensen, 2003; Aanonsen 
et al., 2009) between model parameters and the 
simulated responses, with 𝑛𝑝 and 𝑛𝑑  corresponding to the 

number of model parameters and data respectively; 𝑪𝑫𝑫 

is the (𝑛𝑑 × 𝑛𝑑) auto-covariance matrix of the simulated 
responses; 𝑪𝑫  is the (𝑛𝑑 × 𝑛𝑑) observed data error 

covariance matrix; 𝒅𝑢𝑐 is a (𝑛𝑑 × 1)  vector of perturbed 

observation, i.e. 𝒅𝑢𝑐~𝑁(𝒅𝑜𝑏𝑠 , 𝑪𝑫) for MS-LM-enRML and 

𝒅𝑢𝑐~𝑁(𝒅𝑜𝑏𝑠 , 𝛼𝑗𝑪𝑫) for ES-MDA, where 𝑁 denotes a 

Gaussian distribution and 𝒅𝑜𝑏𝑠 is the (𝑛𝑑 × 1) observation 

vector;  𝒎𝑗 and 𝒎𝑗+1 represent (𝑛𝑝 × 1) vectors of 

parameters to be inverted (e.g. grid-block permeabilities, 
fluid contacts) for one given realization before and after 

assimilation of the data; 𝒈(𝒎𝒋) is the forward response 
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(e.g. simulated well production curves) with input 

parameters 𝒎𝑗 and 𝑲 =  𝑪𝑴𝑫(𝑪𝑫 + 𝑪𝑫𝑫)−1 is  the Kalman 

gain. 
 
Both ES-MDA and MS-enRML modify the inverse term of 
the Kalman gain at each iteration (i.e. at each assimilation 
of the data) in order to handle the non-linearity of the 
problem. The ES-MDA uses an inflation 𝛼𝑗 coefficient so 

that: 

 

𝑲 =  𝑪𝑴𝑫(𝑪𝑫 + 𝛼𝑗𝑪𝑫𝑫)
−1

                                      (2) 

 
whereas the MS-LM-enRML uses a Levenberg-Marquardt 
control parameter 𝜆𝑗 so that: 

 

𝑲 =  𝑪𝑴𝑫((𝜆𝑗 + 1)𝑪𝑫 + 𝑪𝑫𝑫)
−1

                              (3) 

 
Although they are not modifying the Kalman gain the 
same way, the impact of 𝛼𝑗 or 𝜆𝑗 is the same: they control 

the amplitude and orientation of the parameter updates in 
a trust-region (Byrd et al., 1987) way, i.e. by finding the 
best update in a limited region around the current state, 
which helps handle nonlinearity. Impact and control of 
these parameters are discussed in more details in 
(Emerick and Reynolds, 2013; Gentilhomme et al., 2015; 
Oliver et al., 2008). One difference, however, is that ES-
MDA requires the sum of the inverse of 𝛼𝑗 to be equals to 

one. 
 

Parameterization and multi-scale approach 

The main difference between ES-MDA and MS-LM-
enRML comes from the parameterization of the spatial 
properties. ES-MDA works directly on the property values 
inside each grid-block the grid. All the parameters are 
perturbed for each assimilation step (equation 1). 

With the MS-LM-enRML approach, the spatial properties 
are transformed in wavelet coefficients (Sweldens, 1998) 
The assimilation step (equation 1) is then performed on a 
subset of selected coefficients 𝜸𝑜𝑝𝑡 of size 𝑛𝑜𝑝𝑡 ≤ 𝑛𝑝, 

such that: 

[
𝜸𝒐𝒑𝒕

𝜸𝒐𝒑𝒕̅̅ ̅̅ ̅
] = 𝑾. 𝒎                                                                       (4) 

where 𝑾, 𝒎 , 𝜸𝒐𝒑𝒕 and 𝜸𝒐𝒑𝒕̅̅ ̅̅ ̅ correspond to the (𝑛𝑝 × 𝑛𝑝)  

wavelet transform matrix, the (𝑛𝑝 × 1) initial vector of 

grid-block values (e.g. porosity, permeability), the 

(𝑛𝑜𝑝𝑡 × 1) vector of wavelet coefficients updated at the 

assimilation step and its complement vector respectively. 
For sake of simplicity, we assume here that 𝒎 only 

contains spatial properties. Although we optimize only a 
subset of the coefficients, all coefficients are used to 
reconstruct the properties used by the flow simulator 
(Gentilhomme et al., 2015). Wavelet coefficients are both 
defined in space and frequency domains. Therefore, a 
scale-by-scale optimization process can be followed and 
a distance-based localization can be applied. This is 
discussed in more detail in the next section.  

In the MS-LM-enRML method, a first set of large scale 
coefficients is initially selected and one (or several) 
assimilation step is performed by updating this subset. 
Then the parameterization is progressively refined, 
inserting finer scale coefficients in the optimization 
scheme until all the coefficients are included. The goal of 
this approach is to reduce the mismatch between the data 
and the simulated responses by only updating a very 
limited number of large coefficients in the first iteration, 
leaving the other scales unmodified. When the finer scale 
coefficients are finally included in the process, the 
amplitude of the perturbations are smaller as it is directly 
related to the amplitude of the mismatch (equation 1). 
More details about the MS-LM-enRML can be found in 
(Gentilomme et al., 2015). 

Localization 

Localization aims at regularizing the Kalman gain by 
removing the components affected by the spurious 
correlations inherent to the limited size of the ensemble 
used to construct it. Localization can be applied to the 
individual covariance matrices of the Kalman gain or 
directly to the Kalman gain itself (Chen and Oliver, 2010). 
The second approach (localization applied directly to 
Kalman gain itsel) is used in this work: a screen matrix A, 
containing elements in [0, 1], is applied to K such that: 

𝑲̃ = 𝑨 ∘ 𝑲                                                                      (5)      

Where 𝑲̃ is the regularized Kalman gain and ∘ is the 

element wise Schur product. In distance-based 
localization, the elements of A are related to the 
separating distance of the data location (e.g. well 
locations) and spatial parameters (e.g. grid-blocks). 
Figure 2 shows an example of localization map. In this 
case, the elements of A smoothly decrease to zero with 
the separating distance. In other word, the impact of the 
data located in well PROD010 is greater close to the well 
than further away from it. 

Standard distance-based localization method is applied in 
ES-MDA.  A slightly different approach in followed in ML-
LM-enRML. In this case, the localization functions are not 
fixed, but depend on the current scale being optimized 
(Figure 2). When only large scale coefficients are 
updated, the localization is less restrictive as the 
estimated correlations between the data and parameters 
are generally better (Chen and Oliver, 2012). However, 
the Kalman gain is more affected by spurious effects 
when all the coefficients are present. Accordingly, the 
localization becomes more restrictive. More information 
about multi-scale localization can be found in 
(Gentilhomme et al., 2015). 

UNISIM-I-H example 

 
UNISIM-I-H is a synthetic case based on Namorado’s 
Field, located off-shore Brazil, in the Campos Basin. It is a 
sandstone reservoir (Figure 1) with ten years of 
production history, developed with 25 wells, 14 of which 
are producers and 11 of which are injectors. More details 
can be found in (Avansi and Schiozer, 2015).    

Oil production rate, water-cut, bottom hole pressure and 
gas-oil ratio associated with measurement errors (Table 
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3) are used to constraint the inversion of the porosity, net-
to-gross, horizontal permeability (PERMI) and vertical 
permeability (PERMK) fields (Table 1), along with flow 
parameters listed in the Table 2.  
 

 
Figure 1 – UNISIM-I-H synthetic case.  

An ensemble of 200 realizations has been generated by 
Sequential Gaussian Simulation  using well logs hard 
data, whereas the prior values flow parameters are 
samples of truncated Gaussian distributions as described 
in Table 1 below.  

Table 1 – Petrophysical parameters and its respective 

ranges. 

 
 
Table 2 – Flow parameters and their respective 

distribution 

  
Table 3 – List of observed data and their respective 

measurement errors 

 

History-matching settings 

As described before, the MS-LM-enRML iterates through 
different scales, starting with a reduced parameterization, 
whereas the ES-MDA directly starts with all the 
parameters. In both cases, a total number of 4 iterations 
are performed. The MS-LM-enRML iterates through 3 

different scales. One iteration is performed at the two 
intermediate coarse scales and two iterations at the finest 
scale which includes the same number of parameters as 
ES-MDA. 
 
Fixed distance-based localization is used in ES-MDA 
whereas scale-adaptive localization is used in MS-LM-
enRML. Figure 2 shows an example of localization 
applied to the well PROD010 for all the different type 
of production data (Table 3Table 3 – List of observed 

data and their respective measurement errors 
). 

 
Figure 2 – Top: ES-MDA fixed localization for well 

PROD010. Bottom: scale-adaptive localization.  

Comparative results 

Histograms of objective function values for the different 
realizations of the ensemble are shown in Figure 3. ES-
MDA achieves a slightly better match than MS-LN-enRML 
but both methods obtain satisfying misfits well within the 
data uncertainties (i.e. the objective function value is 
lower than 1). We can observe that most of the objective 
function values of ES-MDA are around 0.3, which reflect a 
homogenous match in the ensemble, whereas more 
variability is observed in MS-LM-enRML.  
 

 
Figure 3 – Final objective function values.  
 

Figure 4 shows the water cut final match and prediction 
for the well PROD005. ES-MDA, in agreement with the 
objective function values, reaches a better fit than MS-
LM-enRML. However, more variability is observed with 
the MS-LM-enRML forecast compared to the ES-MDA, 
reflecting more variability in the ensemble.  
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Figure 4 –Water cut curve of well PROD005. 

Figure 5 shows the posterior distribution of the critical 
saturation and water-oil contact. Compared to the means 
and limits of the prior distributions given in Table 2, MS-
LM-enRML seems to better preserve the distribution, 
whereas ES-MDA distributions hit the parameterization 
limits. Although the results obtained by MS-LM-enRML 
seem to act more reasonably, it is difficult to conclude on 
the quality of the results as the correct solution is 
unknown. 

 

 
Figure 5  - a) Posterior distribution of the critical water 
saturation (SWCR) b) and initial Water-Oil contact 

(WOC). 

The Figures 6 and 8 to 12 show the comparison between 
the prior and posterior (mean and standard deviation) for 
200 realizations of each petrophysical properties. 

 
Figure 6 – Average maps of net-to-gross (Prior, MS-LM-

enRML and ES-MDA). 
 

Results are globally consistent between the two methods: 
similar features come out from the inversion in both cases 
(e.g. high porosity and permeability bodies south of the 
reservoir), although differences in the shape and 
amplitudes in values are visible. In both cases, the final 
values are reasonable, even though we can observe 
areas of large or low values. When looking at the average 
of the properties, the MS-LM-enRML better preserves the 
smoothness of the prior, whereas high frequencies are 
introduced in ES-MDA (Table 4). This can be quantified by 
using the ratio of energy   𝑟𝑒   of the high-frequency 

coefficients (Gentilhomme et al., 2015) between the prior 
and final average properties: 
 

𝑟𝑒 =
𝑒𝑥

𝑒𝑝
 , with 𝑒𝑥 = ∑ |𝛾𝑖|𝑖𝜖{𝐻𝐹}                                            (6) 

 
where 𝑒𝑥  (𝑒𝑝) is the final (initial) energy of the coefficients 

for the different properties and {𝐻𝐹} represents a subset 
of high-frequency wavelet coefficients. An increase of the 
energy (i.e. ratio > 1) reflects addition of high-frequency 
content (i.e. noise) during the process. 
 
Table 4 – Energy ratios of the properties 

 
 
Presence of noisy high-frequencies in the average 
denotes the presence of spurious correlations which 
affect all the realizations in the same way. Although both 
methods show an increase of energy, this is less 
significant in the MS-LM-enRML case. 
 

Finally, the standard deviations maps clearly show that 
the MS-LM-enRML better preserves the variability of the 
ensemble compared to ES-MDA. This may partially be 
explained by the fact ES-MDA obtains a slightly better 
match, but the authors believe that multi-scale approach 
helps minimizing the changes in the model parameters. 

a) 

b) 
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However, in term of preservation of the prior features, this 
example does not show major differences between the 
two methods. This can be explained by the fact that the 
prior realizations do not incorporate a large amount of 
data (no seismic data) and do not have features with 
sharp property contrast (e.g. channels). 

 
Figure 7 – Standard deviation maps of net-to-gross 

(Prior, MS-LM-enRML and ES-MDA). 

 

 
Figure 8 –   Average (Top) and standard deviation maps 

(Bottom) of horizontal permeability   (Prior, MS-LM-
enRML and ES-MDA). 

 

 
Figure 9 – Average (Top) and standard deviation maps 

(bottom) of vertical permeability (Prior, MS-LM-enRML 
and ES-MDA). 

 
Figure 10 – Average maps of porosity (Prior, MS-LM-

enRML and ES-MDA). 
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Figure 11 – Standard deviation maps of porosity (Prior, 

MS-LM-enRML and ES-MDA). 
 

Figure 13 illustrates one of the posterior realizations of 
net-to-gross after optimization by the two methods. MS-
LM-enRML posterior realization preserves better the prior 
and is less noisy than ES-MDA.   

 
Figure 12 – Posterior realization (n° 50) of net-to-gross.  

Conclusions and discussions 

Both ES-MDA and MS-LM-enRML provide a good match 
of the UNISIM-I-H data and return realistic output 
realizations while providing useful uncertainty in the 
prediction of the production. Although ES-MDA obtains a 
slightly better match after a fixed number of iterations, 
MS-LM-enRML better preserves the variability in the 
ensemble. It also limits the introduction of high-frequency 
noise in the realizations and obtains more variability in the 
production forecasts. Hence when dealing with seismic 
derived models, MS-LM-enRML might be more adapted 
as it tends to minimize the modifications of the model 
parameters and therefore helps preserve the prior 
information. However, when the prior ensemble is 
generated from stochastic process with little constraint, 
ES-MDA might be more appropriate as it obtains a better 
match with fewer iterations and the preservation of the 
models becomes less important. 

When a large number of data is used to constrain the 
inversion, for example in 4D seismic history-matching, 

one common issue with ensemble-based methods is the 
collapse of the ensemble (Emerick, 2013). Therefore MS-
LM-enRML might be more appropriate in this situation as 
it better preserves the variability of the ensemble than ES-
MDA.  
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